三種程度的無知
倫敦麗池飯店的地下樓有一處以奢華著稱的高注賭場,稱為麗池俱樂部。豪華的賭桌由身著黑制服的荷官主持,牆上掛著文藝復興時期的繪畫,分散四處的燈具照亮金碧輝煌的裝潢。但對偶爾玩玩的賭客而言有點可惜的是,麗池俱樂部也以嚴格過濾賭客自豪。要踏進這座賭場,必須是會員或是飯店住客,當然還要有滿滿的荷包。
2004年3月一天晚上,兩位身著高級西裝的男性陪同一位金髮美女走進麗池俱樂部,打算來玩輪盤。他們跟其他高注賭客有點不同,多次拒絕了賭場經常提供給高額賭客的免費補貼。他們的專注果然有回報,一個晚上下來,他們總共贏到十萬英鎊。這筆錢當然不少,但以麗池的標準而言不算少見。第二天晚上,他們又來到賭場,又選了一具輪盤。這次他們贏到的錢多得多,最後他們把籌碼換成現金,總共帶走一百二十萬英鎊。 賭場員工開始起疑。他們離開後,保全人員檢視閉路電視錄影,看過之後立刻報警,很快就在麗池附近的旅館逮到了他們。這名女性來自匈牙利,兩位同夥來自西伯利亞,全都依詐欺罪遭到起訴。根據媒體初步報導,他們用雷射掃描器分析輪盤桌,把測量數據送進藏在身上的小電腦,算出小球最後可能落在哪裡。這次事件裡有高科技又有俊男美女,當然是很吸睛的故事,但各方報導都忽略了一個重要細節。沒有人能完整解釋他們究竟是怎麼紀錄輪盤小球的運動,並計算出準確的預測。輪盤應該是隨機的,不是嗎? ***************研究輪盤隨機性的方法有兩種,亨利‧龐卡赫(Henri Poincaré)對這兩種方法都有興趣。他的興趣很多,這是其中之一:二十世紀初,龐卡赫的研究對許多數學主題貢獻良多。他是史上最後一個真正的通才,後來沒有一位數學家有能力像他一樣在各個領域間自在悠遊,提出許多重要關聯。 在龐卡赫看來,輪盤這類事件看似隨機,是因為我們不知道這類事件的成因。他指出,我們可以依據自身對某個問題無知的程度來分類問題。如果我們知道某個物體的確切起始狀態(例如位置和速度),又知道這個物體遵循的物理定律,就能依照教科書解決這個物理問題。龐卡赫把這種狀況稱為第一度無知(first degree of ignorance):我們握有全部必要資訊,只需要做簡單計算就好。第二度無知是我們知道物理定律,但不知道或無法精確測量物體的起始狀態;在這種狀況下,我們如果不改進測量技術,就只能預測物體在極短時間內的狀況。最後是第三度,也是最為無知的狀況,我們既不知道物體的起始狀態,也不知道相關物理定律;如果定律過於複雜而無法完全理解,也可以算是第三度無知。舉例來說,假如我們把一罐油漆丟進游泳池,要預測泳客的反應或許很容易,但要預測個別油漆或水分子的行為就會困難得多。 但是我們可以採用另一種方法。我們可以不研究分子間交互作用的細節,而是試著了解它們互相撞擊造成的效果。如果我們觀察所有粒子,就能看見它們混合在一起,經過一段時間之後,油漆分子會均勻分布在游泳池內。由於原因太複雜,很難理解,我們不需要知道原因,但仍然能探討最後的結果。 這種方法同樣能套用在輪盤上。小球移動的軌跡受許多因素影響,單靠觀察轉動的輪盤可能無法理解這些因素。如同個別水分子一樣,我們如果不了解影響小球移動軌跡的複雜原理,就無法預測某次輪盤轉動的結果。但龐卡赫認為,其實我們不一定要知道是什麼原因讓小球停在某個地方,只要觀察許多次轉動,就能知道有什麼結果。
艾伯特‧席布斯(Albert Hibbs)和羅伊‧華福德(Roy Walford)在1947年時就是這麼做的。席布斯當時在攻讀數學學位,他的朋友華福德則是醫學院學生。他們暫時放下芝加哥大學的學業,到內華達州雷諾市研究輪盤是不是真的跟賭場說的一樣純屬隨機。 大多數輪盤都維持法國原始設計,周圍共有38個格子,分別是紅黑交替的數字1到36以及綠色的0和00。因為有0和00,所以這種賭局對賭場比較有利。如果我們在屬意的數字上連續下注1美元,那麼我們可以預測得到平均每38次會贏一次,如此一來,賭場將付出36美元。在這38次開盤中,我們共投下38美元,但平均只能贏到36美元,因此我們損失2美元,也就是平均每次轉動損失0.05美元。賭場要佔到便宜,先決條件是輪盤開出每個數字的機率必須完全相等。但輪盤跟各種機器一樣不見得毫無瑕疵,也可能因使用日久而逐漸耗損。席布斯和華福德要找的,就是類似這樣數字分布不均的輪盤。如果某個數字出現的次數比較多,就對他們比較有利。他們觀察了許多次開盤,想找出不尋常的狀況。這又帶出了一個問題:我們說的「不尋常」是什麼意思? ***************法國的龐卡赫思考隨機性的起源時,在英吉利海峽的另一邊,卡爾‧皮爾森(Karl Pearson)正趁著暑假拋硬幣。暑假結束時,皮爾森共拋了25000次一先令硬幣,逐一記下每次的結果。皮爾森大多在室外拋硬幣,他說這麼做「無疑大大破壞我在社區裡的形象」。除了用硬幣做實驗,皮爾森還請同事拋了8000多次一便士硬幣,以及從袋子裡反覆抽出彩券。 皮爾森說過,我們「並非完全理解自然現象」,而只是「知道我們感知的事物」。他認為,要了解隨機性,盡可能蒐集大量資料十分重要,因此光是拋硬幣和抽彩券他仍不滿足,還看上了蒙地卡羅的輪盤。 皮爾森和龐卡赫一樣博學。除了對機率有興趣,他還編劇和寫詩,也研究物理學和哲學。他出生在英國,但足跡遍及許多地方。他對德國文化格外傾心,因此海德堡大學職員不小心把他的名字Carl拼成Karl後,他乾脆改了名字。 可惜的是,他去蒙地卡羅的心願似乎難以實現。他知道,要申請經費到法國這處避寒勝地進行「研究參訪」幾乎是不可能的,但他說不定不需要真正看到輪盤。《摩納哥日報》(Le Monaco)每個星期會刊出輪盤開出的數字,皮爾森決定觀察1892年夏天四個星期內的結果。他首先觀察紅色和黑色的比例,如果輪盤轉無限多次,並且忽略0和00,那麼紅色和黑色的總比例應該會接近50/50。 在《摩納哥日報》刊出的16000次輪盤開獎結果中,紅色佔50.15%。為了了解其中的差是否出於機率,皮爾森計算出觀察到的開出紅色次數與50%之間的差,再與輪盤確為隨機時的變異相比。他發現相差0.15%不算異常,因此沒有理由懷疑輪盤的隨機性。 紅色和黑色開出的次數或許相仿,但皮爾森還想驗證其他理論。他接著觀察相同顏色連續出現的頻率。賭客往往很迷戀這類連續好運。1913年8月18日晚上,蒙地卡羅一處賭場裡的某具輪盤連續開出12次以上的黑色。賭客擠在桌邊,等著看下一次會開出什麼顏色。下次一定不會開出黑色嗎?輪盤開始轉動,賭客紛紛把錢押在紅色。最後小球又落在黑色上。接著更多的錢押在紅色,輪盤再度開出黑色,如此一而再、再而三,最後這具輪盤總共連續開出26次黑色。如果輪盤確實為隨機,則每次開盤應該都與其他次完全無關,連續開出黑色不會提高紅色出現的機率,但當時的賭客都認為會如此。這類心理偏誤後來被稱為蒙地卡羅謬誤(Monte Carlo fallacy)。 皮爾森比較不同顏色連續開出的次數和輪盤確為隨機時的期望頻率,發現有點不大對勁。相同顏色連續開出2至3次的次數特別少,而只開出一次(即某種顏色開出一次後,下次開出另一種顏色)的次數則多出許多。皮爾森假設輪盤確實為隨機,針對這類例子的極端狀況計算機率。這個機率(稱為p值)非常小,小到皮爾森曾經表示,即使他從地球誕生開始觀察蒙地卡羅的輪盤,也不見得看得到這麼極端的結果。他認為這代表輪盤其實不是機會賽局。 他因為這項發現而大為光火。他原本覺得輪盤是極佳的隨機資料來源,現在卻發現這個賭場實驗室提供的結果不可靠,所以格外氣憤。他說:「一個科學家本來可以自豪地預測拋擲半便士硬幣的結果,但蒙地卡羅輪盤搞砸了他的理論,毀了他的定律。」由於輪盤顯然對他的研究沒有助益,因此皮爾森建議查封賭場,用資產捐助科學研究。然而後來有人發現,皮爾森得出這個詭異結論的原因,其實不是輪盤有問題——當時《摩納哥日報》出資要記者觀看輪盤開盤並記錄結果,但記者根本沒去賭場,而是自己杜撰開盤結果。 席布斯和華福德沒有效法懶惰的記者,而是親身造訪雷諾市去觀察輪盤。他們發現多達1/4的輪盤有某種偏誤。有一具輪盤歪斜得特別嚴重,因此他們在這具輪盤上下了一百美元之後,很快就贏了不少。關於他們最後到底賺到多少錢,說法不一,但不論如何都夠他們買艘遊艇、在加勒比海上四處遊玩一年。 有很多故事提到賭客藉由類似的手法贏錢:很多人提到維多利亞時代有個工程師約瑟夫‧耶格(Joseph Jagger),就利用蒙地卡羅一具有偏誤的輪盤賺到一大筆錢;還有西元1950年代初有一群阿根廷人贏光了公立賭場的錢。透過皮爾森的驗證,我們或許會覺得,找出容易贏錢的輪盤似乎很簡單。但要找出有偏誤的輪盤跟找到容易贏錢的輪盤,是兩回事。 1948年,統計學家艾倫‧威爾森(Allan Wilson)花了四個星期,每天24小時紀錄一具輪盤的開盤結果。他用皮爾森的測試方法探究每個號碼的開出機率是否相同時,發現這具輪盤顯然有偏誤,但看不出來應該怎麼下注最有利。威爾森發表他的資料之後,向對賭博有興趣的讀者提出一個問題。他問:「我們應該依據哪個統計條件決定下注在輪盤的哪個號碼?」 答案足足過了三十五年才出現。數學家史都華‧埃西爾(Stewart Ethier)發現重點不是找出不隨機的輪盤,而是找出有利於下注的輪盤。就算我們觀察大量開盤結果,找到證據證明38個號碼中有某個號碼確實出現次數較多,可能也沒辦法贏到錢。這個號碼出現的機率不能低於1/36,否則我們還是沒辦法贏過賭場。 威爾森的輪盤資料中最常出現的數字是19,但埃西爾測試後,並未發現下注押這個數字長久下來能贏錢的證據。儘管輪盤顯然不是隨機,但似乎也沒有哪個數字特別容易贏錢。埃西爾知道,他的方法對大多數賭客而言大概為時已晚:席布斯和華福德在雷諾市贏了一大筆錢之後,有偏誤的輪盤已經逐漸消失——但輪盤的優勢沒有維持很久。 *************** 當我們處於最高度的無知,也就是原因複雜到難以理解時,我們能做的只有觀察大量事件,看看其中是否有某種重複形態。前面提過,如果輪盤有偏誤,這種統計方法就能發揮作用。我們完全不需要懂輪盤旋轉的物理過程,就能預測可能出現的結果。 但如果輪盤沒有偏誤,或是沒有足夠時間來蒐集大量資料呢?在麗池俱樂部贏走一大筆錢的三人組沒有觀察多次開盤、試圖找出有偏誤的輪盤,而是觀察小球在輪盤上移動的軌跡,因此他們不僅跳脫龐卡赫的第三度無知,更直接超越了第二度。 這項成就非同小可。即使不理會使輪盤小球走現有路徑的物理過程,我們也不一定預測得到它會落在哪裡。這些原因沒有油漆分子和水分子碰撞那麼複雜,所以不難理解,但可能太過細微而難以發現。舉例來說,小球初始速度只要有極小的差異,就會使最終停留位置出現很大的差別。龐卡赫指出,輪盤小球起始狀態中某些小到難以察覺的差異,可能造成難以忽視的影響,但我們往往認為結果完全出於機率。 這個問題稱為初始條件的敏感性(sensitive dependence on initial conditions),意思是即使我們蒐集到某個過程(例如輪盤旋轉或熱帶氣旋)的詳細測量數據,但我們忽視的微小因素往往會導致戲劇性的結果。數學家愛德華‧勞倫茲(Edward Lorenz)在一次談話中問道:「一隻蝴蝶在巴西拍動翅膀,可能導致美國德州出現龍捲風嗎?」早在此前70年,龐卡赫就指出所謂的「蝴蝶效應」。 勞倫茲這項研究的主要重點是預測結果,後來發展成混沌理論,用意是希望更準確地預測天氣以及尋求預測未來的方法。龐卡赫感興趣的則是相反的問題:一個過程究竟需要多少時間,才能變成隨機過程?事實上,輪盤小球的路徑真的可能為隨機嗎? 龐卡赫受輪盤觸發而著手研究,但他是藉由研究規模大上許多的軌道才獲致這個重大突破。十九世紀時,天文學家已經知道散布在黃道帶上的小行星。他們發現這些小行星在夜空中分布得相當均勻。龐卡赫想知道為什麼會這樣。 他知道小行星一定遵循克卜勒運動定律,而且我們不可能知道它的初始速度。龐卡赫曾說:「我們或許可以把黃道帶看成巨大的輪盤,造物者在上面撒下許許多多小球。」為了理解小行星的重複形態,龐卡赫決定比較一個假設物體的總行進距離和它環繞某一點的次數。 假設我們展開一捲長度極長、極度平滑的壁紙。把這捲壁紙攤平之後,拋下一顆彈珠,讓它沿著紙捲滾。接著再拋下一顆、然後再拋下許多顆。有些彈珠拋下時滾得快、有些滾得慢,由於壁紙十分平滑,所以速度快的彈珠很快就滾得很遠,速度慢的彈珠在紙上就滾得慢上許多。 彈珠不停地向前滾,一段時間之後,拍照記錄它們目前的位置。為了標記彈珠位置,我們在每個彈珠所在的紙捲邊緣剪出一個缺口。接著拿起彈珠,重新捲起壁紙。現在如果觀察紙捲邊緣,會發現一個缺口出現在圓周上任一位置的機率相同。這是因為紙捲的長度(也就是彈珠可行進的距離)比紙捲的直徑長了許多。彈珠總行進距離的少許變化,對缺口出現在圓周上的位置影響很大。如果持續時間夠長,這樣的初始條件敏感性會使缺口位置看來像是隨機的。龐卡赫證明小行星軌道也有同樣的現象。一段時間之後,小行星會在黃道帶上均勻分布。 對龐卡赫而言,黃道帶和輪盤是相同的概念。他認為旋轉許多次後,輪盤小球最後落下的位置將完全隨機。此外他也指出,某些下注方式會更快踏入隨機性的領域。因為輪盤格子是黑色和紅色交替出現,所以要預測兩者之中會出現哪一個,就必須精確計算小球會停留在哪一格。即使開盤一次或兩次,這還是極難計算。其他下注方式(例如預測小球會落在輪盤上的哪一半)則對初始條件比較不敏感,因此輪盤必須開盤許多次,結果才會成為隨機。 對賭客而言幸運的是,輪盤開盤一次不需要花上極長的時間(不過有個常見的謠傳是數學家布雷斯‧巴斯卡〔Blaise Pascal〕在嘗試製作永動機時發明了輪盤),因此只要精確測量輪盤小球的初始路徑,理論上就可以避免落入龐卡赫的第二度無知。但必須找出適當的測量方法。 麗池俱樂部不是第一個傳出輪盤紀錄技術傳奇故事的地方。早在席布斯和華福德在雷諾市利用有偏誤的輪盤贏了一大筆錢的八年前,愛德華‧索普(Edward Thorp)坐在美國加州大學洛杉磯分校的一間交誼室裡,跟學生討論快速致富祕訣。那是個愉快的星期天下午,他們正在爭論如何贏到輪盤的錢。有個人說賭場裡的輪盤通常沒有瑕疵,這句話給了索普一些靈感。當時索普剛開始攻讀物理博士學位,他突然想到,要從一具正常保養的健全輪盤贏到錢,其實不是統計問題,而是物理問題。索普這麼說:「環繞輪盤行進的小球,突然變得像在宏大、精確又可預測的路徑上運行的行星。」
閱讀完整內容本文摘錄自
勝算:賭的科學與決策智慧
亞當・庫查司基
由 行路 提供
相關